
Future Generation Computer Systems 26 (2010) 162–166

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Recording the control flow of parallel applications to determine iterative and
phase-based behavior!

Karl Fürlinger a,∗, Shirley Mooreb

a Computer Science Division, EECS Department, University of California at Berkeley, Soda Hall 593, Berkeley, CA 94720, USA
b Innovative Computing Laboratory, EECS Department, University of Tennessee, Claxton Complex, Knoxville, TN 37996, USA

a r t i c l e i n f o

Article history:
Received 16 October 2008
Received in revised form
5 March 2009
Accepted 13 May 2009
Available online 20 May 2009

Keywords:
Performance tools
Execution control flow visualization and
analysis

Performance profiling
Iterative and phase-based behavior of
applications

a b s t r a c t

Many applications exhibit iterative and phase-based behavior. We present an approach to detect and
analyze iteration phases in applications by recording the execution control flow graph of the application
and analyzing it for loops that represent iterations. Phases are then manually marked and performance
profiles are captured in alignment with the iterations. By analyzing how profiles change between capture
points the differences in execution behavior between iterations can be highlighted.

Published by Elsevier B.V.

1. Introduction

Many applications exhibit iterative and phase-based behavior.
Typical examples are the time steps in a simulation and iteration
until convergence in solvers of linear systems of equations. With
respect to performance analysis phase knowledge can be exploited
in several ways. First, repetitive phases offer the opportunity
to restrict data collection to a representative subset of program
execution. This is especially beneficial when tracing is used due to
the large amounts of performance data and the challenges involved
with capturing, storing, and analyzing it. Conversely, it can be
interesting to see how the iterations differ and change over time to
expose effects such as cache pollution, operating system jitter and
other sources that can cause fluctuations in the execution time of
otherwise similar iterations.

In this paper we present an approach to detection and analysis
of phases in threaded scientific applications. Our approach assists
in the detection of the phases based on the control flowgraph (CFG)
of the application if the developer is not already familiar with the
structure of the code. To analyze phase-based performance datawe

! This work was partially supported by US DOE SCIDAC grant #DE-FC02-
06ER25761 (PERI) and NSF grant #07075433 (SDCI-POINT).∗ Corresponding author. Tel.: +1 510 984 2526.

E-mail addresses: fuerling@eecs.berkeley.edu (K. Fürlinger),
shirley@eecs.utk.edu (S. Moore).

modified an existing profiling tool for OpenMP applications. Based
on markups in the code that denote the start and end of phases,
the profiling data is dumped into a file during the execution of the
application (and not only at the end of the program run) and can
thus be correlated to the application phases.

The rest of this paper is organized as follows. Section 2 describes
the techniquewe used to assist the developer in detecting iterative
application phases. In Section 3 we describe the analysis of
performance data based on phases using the existing profiling tool
called ompP. In Section 4 we describe an example of applying our
technique to a benchmark application and in Section 5we describe
related work. We conclude the paper in Section 6.

2. Iterative phase detection

Our approach to identify iterative phases in threaded applica-
tions is based on the monitoring and analysis of the control flow
graph of the application. For this, we extended our profiling tool
ompP.

ompP [1] is a profiling tool for OpenMP applications that
supports the instrumentation and analysis of OpenMP constructs.
For sequential andMPI applications it can also be used for profiling
on the function level, and the phase detection described here
is similarly applicable. ompP keeps profiling data and records a
callgraph of an application on a per-thread basis and reports the
(merged) callgraph in the profiling report.

0167-739X/$ – see front matter. Published by Elsevier B.V.
doi:10.1016/j.future.2009.05.008

http://dx.doi.org/10.1016/j.future.2009.05.008
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:fuerling@eecs.berkeley.edu
mailto:shirley@eecs.utk.edu


K. Fürlinger, S. Moore / Future Generation Computer Systems 26 (2010) 162–166 163

Fig. 1. Illustration of the data collection process to reconstruct the control flow
graph.

Unfortunately, the callgraph of an application (recording the
caller–callee relationships and also the nesting of OpenMP regions)
does not contain enough information to reconstruct the control
flow graph. However, a full trace of function execution is not
necessary either. It is sufficient that for each callgraph node a
record is kept that lists all predecessor nodes and how often the
predecessors have been executed. A predecessor node is either
the parent node in the callgraph or a sibling node on the same
level. A child node is not considered a predecessor node because
the parent–child relationship is already covered by the callgraph
representation. An example of this is shown in Fig. 1. The callgraph
(lower part of Fig. 1) shows all possible predecessor nodes of node
A in the CFG (control flow graph). They are the siblings B and C , and
the parent node P . The numbers next to the nodes in Fig. 1 indicate
the predecessor nodes and counts after one iteration of the outer
loop (left hand side) and at the end of the program execution (right
hand side), respectively.

Implementing a mechanism to record the execution control
flow according to this scheme in ompP was straightforward. ompP
already keeps a pointer to the current node of the callgraph (for
each thread) and this scheme is extended by keeping a previous
node pointer as indicated above. Again this information is kept on
a per-thread basis, since each thread can have its own independent
callgraph as well as flow of control.

The previous pointer always lags the current pointer one
transition. Prior to a parent → child transition, the current pointer
points to the parent while the previous pointer either points to the
parent’s parent or to a child of the parent. The latter case happens
when in the previous step a child was entered and exited. In the
first case, after the parent → child transition the current pointer
points to the child and the previous pointer points to the parent.
In the latter case the current pointer is similarly updated, while
the previous pointer remains unchanged. This ensures that the
previous nodes of siblings are correctly handled.

With current and previous pointers in place, upon entering a
node, information about the previous node is added to the list of

previous nodes with an execution count of 1, or, if the node is
already present in the predecessor list, its count is incremented.

The data generated by ompP’s control flow analysis can be
displayed in two forms. The first form visualizes the control flow
of the whole application, the second is a layer-by-layer approach.
The full CFG is useful for smaller applications, but for larger
codes it can quickly become too large to comprehend and cause
problems for automatic graph layout mechanisms. An example of
an application’s full control flow is shown in Fig. 2 along with the
corresponding (pseudo-) source code.

Rounded boxes represent source code regions. That is, regions
corresponding to OpenMP constructs, user-defined regions or
automatically instrumented functions. Solid horizontal edges
represent the control flow. An edge label like i|n is to be interpreted
as thread i has executed that edge n times. Instead of drawing each
thread’s control flow separately, threads with similar behavior are
grouped together. For example the edge label 0–3|5 means that
threads 0, 1, 2, and 3 executed that edge 5 times. This greatly
reduces the complexity of the control flow graph and makes it
easier to understand.

Dotted vertical lines represent control flow edges from parent
to child (with respect to the callgraph). The important difference
in interpreting these two types of edges is that a solid edge from A
to B means that B was executed after A finished execution while a
dotted line from C to D means that D is executed (or called) in the
context of C (i.e., C is still ‘‘active’’).

Based on the control flow graph, the user has to manually mark
the start and end of iterative phases. To allow a user to perform
this markup we extended the OpenMP instrumenter OPARI [2].
OPARI (OpenMP Pragma And Region instrumenter) performs an
automated instrumentation of OpenMP constructs and allows the
user to specify source code regions of interest using pragmas in
C/C++ and comments in FORTRAN. To mark the start of the phase
the user adds a directive in the form phase start, and to mark
the end, phase end.

Automating the process of marking the phase boundaries is
an area for future work. This automation step will require graph
algorithms to analyze the generated flow graphs and potentially
the usage of heuristics to determine the iterations in cases with
more complex flowgraphs. As of now, our approach assists the user
in determining and analyzing the iterative structure of their code.

3. Iterative phase analysis

The phase-based performance data analysis implemented in
ompP captures profiling snapshots that are aligned with the start
and end of program phases and iterations. Instead of dumping
a profiling report only at the end of the program execution, the
reports are aligned with the phases and the change between
capture points can be correlated to the activity in the phase. This
technique is a modification of the incremental profiling approach

Fig. 2. An example for a full control flow display of an application.



164 K. Fürlinger, S. Moore / Future Generation Computer Systems 26 (2010) 162–166

Fig. 3. (Partial) control flow graph of the CG application (size C).

described in [3] where profiles are captured in regular intervals
such as 1 s.

The following performance data items can be extracted from
phase-aligned profiles and displayed to the user in the form of 2D
graphs.

Overheads ompP classifies wait states in the execution of the
OpenMP application into four overhead classes: synchro-
nization, limited parallelism, thread management and
work imbalance. Instead of reporting overall, aggregated
overhead statistics, ompP’s phase analysis allows the cor-
relation of overheads that occur in each iteration. This
type of data can be displayed as 2D graphs, where the
x-axis correlates to execution time and the y-axis displays
overheads in terms of the percentage of execution time
lost. The overheads can be displayed both for the whole
application and for each parallel region separately. An ex-
ample is shown in Fig. 5.

Execution Time The amount of time a program spends executing
a certain function or OpenMP construct can be displayed
over time. Again, this display shows line graphs where
the x-axis represents (wall clock) execution time of the
whole application while the y-axis shows the execution
time of a particular function or construct. In most cases
it is most useful to plot the execution time sum over
all threads, while it is also possible to plot a particular
thread’s time, the minimum, maximum or average of
times.

Execution Count Similarly to the execution time display, this view
showswhen certain constructs or functions got executed,
but instead of showing the execution time spent, the
number of invocations or executions is displayed in this
case.

Hardware Counters ompP is able to capture hardware perfor-
mance counters through PAPI [4]. Users select a counter
theywant tomeasure and ompP records this counter on a
per-thread and per-region basis. Hardware counter data
can best be visualized in the form of heatmaps, where
the x-axis displays the time and the y-axis corresponds to
the thread ID. Tiles display the normalized counter values
with a color gradient or gray scale coding. An example is
shown in Fig. 5.

4. Example

In this example we apply the phase detection and analysis
technique to a benchmark code from the OpenMP version (3.2)
of the NAS parallel benchmark suite. All experiments have been
conducted on a four processor AMD Opteron SMP system. The
application we chose to demonstrate our technique is the CG
application which implements the conjugate gradient technique.

5.25

4.72

4.20

3.67

3.15

2.62

2.10

1.57

1.05

0.53

0.00

Imbalance
Thread Management

Overheads (%)

Execution time (seconds)

92 185 278 371 463 556 649 742 834 9270

Fig. 4. Overheads of the iterations of the CG application. The x-axis is the wallclock
execution time in seconds, while the y-axis represents the percentage of execution
time lost due to overheads.

The CG code performs several iterations of an inverse power
method to find the smallest eigenvalue of a sparse, symmetric,
positive definite matrix. For each iteration a linear system Ax = y
is solved with the conjugate gradient method.

Fig. 3 shows the control flow graph of the CG application (size
C). To save space, only the region identification numbers Rxxxx
are shown in this example; in reality, the control flow nodes
show important information about the region such as region type,
location (file name and line number) and execution statistics in
addition. Evidently the control flow graph shows an iteration that
is executed 76 times where each iteration takes a path different
from the others. This is the outer iteration of the conjugate gradient
solver which is executed 75 times in the main iteration and once
for initialization.

Using this information (and the region location information)
it is easy to identify the iterative phase in the source code. We
marked the start of each iteration with a phase start directive
and each end with a phase end directive. Using directives
(compiler pragmas in C/C++ and special style comments in
FORTRAN) has the advantage that the normal building process is
not interrupted. The directives are translated into calls that cause
ompP to capture profiles when performance analysis is done, and
ompP’s compiler wrapper script translates the directives into calls
implemented by ompP’s monitoring library.

Fig. 4 shows the overheads over time display for the iterations
of the CG application with problem size C. Evidently, the only
significant overhead identified by ompP is imbalance overhead and
the overhead does not change much from iteration to iteration
with the exception of two peaks. The most likely reason for
these two peaks is operating system jitter, since the iterations are
otherwise identical in this example.

Fig. 5 shows the heatmap display of the CG application with
four threads. The measured counter is PAPI_FP_OPS. In order to
visually compare values, absolute values are converted into rates.
The first column of tiles corresponds to the initialization part of



K. Fürlinger, S. Moore / Future Generation Computer Systems 26 (2010) 162–166 165

Fig. 5. Performance counter heatmap of the CG application. The horizontal axis represents execution time. There is a tile for each phase or iteration and the labels correspond
to the iteration number. The vertical axis corresponds to the thread ID. The lower part of the figure is the legend showingwhich color corresponds towhich hardware counter
intensity value.

the code which features a relatively small number of floating point
operations; the other iterations are of about equal size but show
some difference in the floating point rate of execution.

The heatmap display is available for any counter that can be
measured with PAPI. The images are created by post-processing
ompP’s profiling reports with a perl script that generates SVG
(scalable vector graphics) images that can be opened with any
modern web browser. Depending on the selected hardware
counters, this display offers a very interesting insight into the
behavior of the applications. Phenomena that we were able to
identify with these performance displays in previous work [3]
include:
• The homogeneity or heterogeneity of thread behavior. For

example, in 32-thread runs, threads 16, 8, and 24 would
frequently show markedly different behavior compared to
other threads for many of the applications of the SPEC OpenMP
suite we studied. We identified several possible reasons for this
difference in behavior, either coming from the application itself
(related to the algorithm) or from themachine organization and
system software layer (mapping of threads to processors and
their arrangement in the machine and its interconnect).

• Identification of temporary performance bottlenecks such as
short-term bus-contention.

5. Related work

Control flow graphs are an important topic in the area of
code analysis, generation, and optimization. In that context,
CFGs are usually constructed based on a compiler’s intermediate
representation (IR) and are defined as directed multi-graphs
with nodes being basic blocks (single entry, single exit) and
nodes representing branches that a program execution may take
(multithreading is hence not directly an issue). The difference
from the CFGs in our work is primarily twofold. First, the nodes
in our graphs are generally not basic blocks but larger regions
of code containing whole functions. Secondly, the nodes in our
graphs record transitions that have actually happened during the
execution and do also contain a count that shows how often the
transition occurred.

Detection of phases in parallel programs has previously been
applied primarily in the context of message passing applications.
The approach of Casas-Guix et al. [5] works by analyzing the
autocorrelation of message passing activity in the application,
while our approach works directly by analyzing the control flow
graph of the application.

The work of Preissl et al. [6] tries to detect recurring patterns
of communication events for optimization purposes. Events are
recorded as an array of 32-bit integers (tracing is performed) and
repeating sequences of events are searched for by either a con-
volution or suffix-tree-based method. The identified and matched
repeating sequences, together with source code analysis using
Rose [7], are the basis for source code transformations such as re-
placing a series of point to point operations with the correspond-
ing collective. Compared to their method, our technique avoids the

overhead of generating, storing, and analyzing traces. Instead our
technique of recording the execution control flow directly exposes
repetitive structures as loops in the flow graphs.

Earlier work by Knuepfer et al. [8,9] has focused on exploiting
repeating patterns in traces to reduce trace size. The resulting
data structures are called compressed complete callgraphs and
they can be used for lossy storage of traces in trace analysis tools.
In contrast, our approach never stores full traces but directly
derives the flow information from profiling. The earlier work of
Kranzlmüller [10,11] was primarily concerned with the detection
of repeating patterns in recorded traces for debugging purposes.

Szebenyi et al. [12] investigate the merits of iteration phase
based performance analysis for the MPI-parallel tree code PEPC
(Pretty Efficient Parallel Coulomb-solver) using the Scalasca [13]
toolset. Between iterations they find gradually varying perfor-
mance characteristics (such as the computational load of individual
ranks) that accumulate to big load imbalances over time. Their case
study highlights the benefits of phase-based performance anal-
ysis because the effects visible in individual iterations would be
hard to discern based on performance data for the whole program
execution.

6. Conclusion

We have presented an approach for detecting and analyzing
the iterative and phase-based behavior in threaded applications.
The approach works by recording the control flow graph of the
application and analyzing it for loops that represent iterations. This
help of the control flow graph is necessary and useful if the person
optimizing the code is not the code developer and does not have
intimate knowledge.

With identified phase boundaries, the user marks the start
and end of phases using directives. We have extended a profiling
tool to support the capturing of profiles aligned with phases. In
analyzing howprofiles change between capture points, differences
in execution behavior between iterations can be uncovered.

References

[1] Karl Fürlinger, Michael Gerndt, ompP: A profiling tool for OpenMP,
in: Proceedings of the First InternationalWorkshop onOpenMP, IWOMP 2005,
Eugene, Oregon, USA, May 2005.

[2] Bernd Mohr, Allen D. Malony, Sameer S. Shende, Felix Wolf, Towards a
performance tool interface for OpenMP: An approach based on directive
rewriting, in: Proceedings of the Third Workshop on OpenMP, EWOMP’01,
September 2001.

[3] Karl Fürlinger, Jack Dongarra, On using incremental profiling for the
performance analysis of shared memory parallel applications, in: Proceedings
of the 13th International Euro-Par Conference on Parallel Processing, Euro-Par
’07, August 2007 (in press).

[4] Shirley Browne, Jack Dongarra, N. Garner, G. Ho, Philip J. Mucci, A portable
programming interface for performance evaluation on modern processors,
Int. J. High Perform. Comput. Appl. 14 (3) (2000) 189–204.

[5] Marc Casas-Guix, Rosa M. Badia, Jesus Labarta, Automatic phase detection of
MPI applications, in: Proceedings of the 14th Conference on Parallel Comput.,
ParCo 2007, Aachen and Juelich, Germany, 2007.

[6] Robert Preissl, Martin Schulz, Dieter Kranzlmüller, Bronis R. Supinski,
Daniel J. Quinlan, Using MPI communication patterns to guide source code
transformations, in: ICCS ’08: Proceedings of the 8th International Conference
on Computational Science, Part III, Springer-Verlag, Berlin, Heidelberg, 2008,
pp. 253–260.



166 K. Fürlinger, S. Moore / Future Generation Computer Systems 26 (2010) 162–166

[7] Daniel J. Quinlan, ROSE: Compiler support for object-oriented frameworks,
Parallel Process. Lett. 10 (2/3) (2000) 215–226.

[8] Andreas Knüpfer, Wolfgang E. Nagel, New algorithms for performance
trace analysis based on compressed complete call graphs, in: International
Conference on Computational Science (2), 2005, pp. 116–123.

[9] Andreas Knüpfer, Wolfgang E. Nagel, Construction and compression of
complete call graphs for post-mortem program trace analysis, in: Proceedings
of the 2005 International Conference on Parallel Processing, ICPP-05, Oslo,
Norway, June 2005, pp. 165–172.

[10] Dieter Kranzlmüller, Communication pattern analysis in parallel and dis-
tributed programs, in: Proceedings of the 20th IASTED International Multi-
Conference Applied Informatics, AI 2000, ACTA Press, 2002, pp. 153–158.

[11] Dieter Kranzlmüller, Event Graph Analysis for Debugging Massively Parallel
Programs, Ph.D. Thesis, GUP Linz, Joh. Kepler University Linz, Altenbergerstr.
69, A-4040 Linz, Austria, September 2000.

[12] Zoltan Szebenyi, Brian J.N. Wylie, Felix Wolf, Scalasca parallel performance
analyses of PEPC, in: Proceedings of the Workshop on Productivity and
Performance, PROPER 2008 at EuroPar 2008, Las Palmas de Gran Canaria,
Spain, 2006.

[13] Markus Geimer, Felix Wolf, Brian J.N. Wylie, Bernd Mohr, Scalable parallel
trace-based performance analysis, in: Proceedings of the 13th European
PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual
Machine and Message Passing Interface, EuroPVM/MPI 2006, Bonn, Germany,
2006, pp. 303–312.

Karl Fuerlinger is a postdoctoral researcher at the Univer-
sity of California at Berkeley. He earned his Ph.D. at the
University of Technology in Munich and was a Senior Re-
search Associate at the Innovative Computing Laboratory
(ICL) in Knoxville TN before joining UC Berkeley. His re-
search interests include parallel computing and machine
learning.

Shirley Moore is Associate Director of Research at the
Innovative Computing Laboratory (ICL) in the Electrical
Engineering andComputer ScienceDepartment at theUni-
versity of Tennessee. Her research interests are in per-
formance analysis and optimization of parallel software,
software reuse in high performance computing, and dis-
tributed databases.


	Recording the control flow of parallel applications to determine iterative and phase-based behavior
	Introduction
	Iterative phase detection
	Iterative phase analysis
	Example
	Related work
	Conclusion
	References


